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In the MFE method, grid co-ordinates themselves are dependent
variables which are calculated continuously at each time step in order
to minimize POE residuals. This feature has successfully suppressed
numerical dissipation to very low levels and has resolved accurately in
1-0 those physical transport processes which may occur over extremely
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span macroscopic scales. The objectives of the presently rep~orted -
research effort were to extend the MFE method to 2- and to investigate
its basic properties and needs for solving important PiE's in 2-0.
This, of course, is an on-going effort which is in only the early
stages of discovery and development. This report describes the work S
tasks and results which have contributed to attainment of the
objectives cited above.
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INTRODUCTION

The moving finite element (NFE) method is a new approach for numerically

r solving partial differential equation (PDE) systems;(1,2 ,3 ) it is particularly

well suited for resolving POE solutions which may contain large, multiple

gradients over highly disparate scales in both space and time. These types

of PDE's abound in such basic technical disciplines as aerodynamics (with em-

phasis on shear layers, shocks and their possible interactions), combustion,

plasma physics, material interface phenomena, continuum mechanics, and other

transport processes.

In the MFE method, grid co-ordinates themselves are dependent variables
which are calculated continuously at each time step in order to minimize PUE

residuals. This feature has successfully suppressed numerical dissipation to

very low levels and has resolved accurately in 1-0 those physical transport

h. processes which may occur over extremely small scales simultaneously with

other physical processes which may span macroscopic scales. The objectives

of the presently reported research effort were to extend the MFE methoa to

2-D and to investigate its basic properties and needs for solving important

A L PDE's in 2-D. This, of course, is an on-going effort which is in only the

early stages of discovery and development. This report describes the work

tasks and results which have contributed to attainment of the objectives
cited above. The results of work performed to date can be summarized briefly

as an introduction to the more detailed reporting which follows in subsequent

sections.

It was established during the first year of this study that the MFE

method does indeed extend logically and practically to 2-D. This fact has

" been substantiated in recent work by others as well. 5  An initial experi-

mental 2-D MFE code version was developed in the first year of our work
under AFOSR support for the purpose of conducting continuing theoretical

&. and applied mathematical research in diverse scientific contexts. Also in
the first year of study, effective MFE node movement properties and signi-

ficant node savings were demonstrated for simple -- but yet significant --

°•-7 1
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problems in 2-0. The MFE code structure was found to be amenable to vector-

ization and use on envisioned advanced computers. Work during the second

year of study focussed on such essential issues and research needs as OUE

integrators for numerical POE solution methods, MFE regularization functions, .....

-•grid node biasing effects, and linear solvers for large skewed matrices which

do not contain diagonally dominant terms. Work in the third year has ad-

dressed the possible resolution of highly disparate PUE scales in order to
analyze physical dissipation effects in shocks, distinct from artificial or

* .purely numerical diffusion effects. This has involved development in the MFE

method of physical, non-slip boundary conditions and of improved numerical

conditioning of matrix solvers for the discretized equations of the MIFE

method. Detailed accounts of research during this three year project are

presented in the report which follows.

iI-2
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I. Mathematical Background of the MFE Method

In order to present a coherent report of work to the broadest range

of readers, we present here a brief mathematical sketch of the MFE method.

- Consider a general system of partial differential equations (PUE's), U = L(U)

: •or

SU 1 = L1(U) .(1)"

UN = LN(U)

Using piecewise linear approxminants of u1 ... uN,* which are of the

form u = mx + ny + p. on a hexagonally connected triangular mesh (Figures

1-4). application of the chain rule to the differentiation of uk gives:

rM= i ak + i 00 + ,yk , where ()

ak a k 00k La ;YkJ  k (3)

The key aspect of the MFE method lies in the rigorous retention of the

nodal motion terms involving x and y In most conventional POE solution

methods, the nodal motion terms are either set to zero (fixed nodes) or
--= allowed to assume some arbitrary selected values (e.g., mean fluid velocities

in Lagrangian codes).

- Alternatively, the MFE method uses a very fundamental criterion for the

LX ,evaluation of grid node motions (i and j) at every time step. That is, the

basic MFE method is formulated by requiring that all of the time derivatives

-j ..., aNj, xj, yj be found at each instant in such a way as to minimize

the L2 norm of the POE residual. II L(U)Jj . This has been found to
minimize PDE solution errors and to dramatically reduce the number of grid

*The present mesh triangulation has been chosen for simplicity. Many other
*grid meshing schemes are, of course, possible; and many of the alternative

schemes should be investigated in future work. It is interesting to note,
.however, that numerous MFE results confirm that PUE solution approximants

.* of higher degree are not nearly so critical for attaining high levels of
S..stability, accuracy and resolution in an optimal moving node solution method
.: ,-as they are in fixed node or less optimal adaptive PDE solution methods.

-3-
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Exact solution surface

Figure 1. Exact solution surface, with lines
of constant X and constant Y.

I-.- Approximation surface I

Figure 2. Approximate solution represented by
piecewise linear functions making
up triangular facets.

Figure 3. Basis functions defined on each
* hexagon provide three linearly

independent basis functions on each
triangle of the entire problem do-
wain.
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Figure 4. MFE Nodal Grid.

nodes. In order to handle the degeneracies which can sometimes occur in such

a parametrization of PDE solutions, regularization techniques are applied.

That is, the more general function,

W21Ui- L(U)II 2 + w2 I1NL(U)II 2  
.- (c -S ) 2

N "" 2 + triangle .. "
altitudes

is minimized with respect to the parameter derivatives al 3 , .... aN., xj, y-
The present code applies the most elementary form of regularization functions

in which the expressions for c.2 (d.) and c.S. = c.(d.)S.(d.) become extremely

large and thus restrict node motions when any triangle altitude dj approaches .

a user-specified minimum separation tolerance. Regularization techniques

also serve to move nodes according to certain physical criteria in addition

to providing numerically well-conditioned node movement properties. The

variational equations for this minimization procedure are then represented

by the large set of OUL's which follows:

F,.[(J, cak)ak+ (00. ') + (-,,. ).] - '

(4a)

(Lk(U). aI) for k 1, N,

-5- t.



w' F,[Cctj, Okik. + (Oki, Ok)x. + (-Ykj. i1 -;jI ~~k-i k T k ~ B) 3

(4b)
N2

F, w' (Lk(U), Ok1 ) + (regularization terms)
k=1 k k

N
, w 2 1;[ (mi. yk )ik. + (Oki, Yk 1 )i. + (Yd 3. Yk1)i;]

k=i k j

* (4c)
N

ti w2 (Lk . k ) + (regularization terms)
k-i k

The sums on j in Equations (4) run over the seven neighboring nodes of

i (including the ith node itself) in the hexagonal grid. Equations (4) thus
provide the basic working equations of the MFE method in 2-U. This system of

S. OVE's is of the form

R(y) = C(y)- g(y) 0 , (5)

where y(t) = (all, ... , xl, yl; a12, ... , x2. Y2; ........ ) is the vectorL of unknown parameters, and the "mass matrix" C(y) is symmetric and positive

definite. This system of ODE's can be quite stiff, and stiff OUE solution

methods are thus required in order to effectively obtain the numerical solu-

tions of Equations (4) and (5). Research which attempts to eliminate this
L, stiffness feature is in a very early stage of investigation,and preliminary

results are not reported at this time.

The stiffly stable numerical integration methods which can be used to

solve the system of ordinary differential equations (4) and (5) usually con-

tain a series of backward Cauchy-Euler steps interspersed with interpolations

and extrapolations, all amidst error-controlling tests and strategies. A

": backward Cauchy-Euler (BCE) step is obtained by replacing y in Equation (5)

by the backward difference (y - ;)/At, where Is the known parameter vector

at the previous time, and y is the unknown parameter vector at the current

time. Upon linearization, the BCE equation then reads as

-6-



R(y. j) R(j) + R (j) 6Y 0 . (1)

I The structure of the mass matrix C(y) determines in large measure the

degree of difficulty and computational cost of obtaining numerical solu-

" tions for 6y in Equation (6) and thus for the y array in Equations (4) and

(5). Both an implicit Runge-Kutta method (DIRKZ) and the Gear method are

* ~used interchangeably in the present test MFE code in 2-0; both of these

. stiff ODE solvers incorporate the backward Cauchy-Euler steps described

above.

The structure of the mass matrix C(y) can be seen by considering the

15th node in a 6 x 6 grid mesh of the type shown in Figures 1-4. The

coupling among nodes in Equation (4) is represented schematically by

20 21

14 1 16

and the block structure of the mass matrix is shown in Figure 5. For a PUE

system with 2 "problem variables," the segment of the dependent variable

array y associated with the 15th node is (y)15 = (a115 a215' x15, Y15)*-

and the 4 x 4 block C15 .16 is

(16, a15 ) 0 (816' 015) (YI16 , a15 )

0 (161 15) (8216' 0'15 ) (216 15)

15 16 ( 16' )115 ) ( 16' 21 ) 1( k16 ' k15) (yk1 6 ' k15) (

. -k-1 k=1

2 2

16 Y.5!c, ,'Z 5)1 9 1 )1 9 1

*The co-ordinate variable y15 of the 15th MFE node is not to be confused
with the dependent variable of the MFE method which is also denoted by y.

Li -7-



Although direct L-U decomposition and solution of Equation (6) is rela-

tively slow, it is reliable and was thus used in the initial code versions in

the presently reported work. More efficient matrix solution methods remain

under investigation.

9 10 11 12 13 14 15 16 17 18 19 20 21
9

10

12

13

14
C . 15

16

17

18

19 .

20

21

Figure 5. Block Structure of the Mass Matrix C(y). -

A large amount of the computational effort in the MFE method is devoted

to repetitive evaluations of the inner product terms in Equations (4), which

are then used iteratively in the numerical ODE integration procedures. ie- -
cause invariant geometrical relationships can be exploited frequently in the

evaluation of inner products, these geometrical relationships are generated

and encoded once, and for all time, from the initialization data at the

outset of code calculations. Figures 6-8 illustrate the grid mesh conventions
which would be established and encoded by the present 2-0 research code for

42 nodes on a 7 x 6 grid. The manner in which these relationships are used
can be seen readily by considering a single conservation equation

ut =fx gy+ Uxx +uyy ()

and the piecewise linear basis functions about the ith node of the form

" aix + biy + ci (9)
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Figure 6. Triangles.

'0~~ 5F'o \"'-Q~ -1 f\8 96

,86 88 89 91 92 94 95
58 60 61 63 64 66 67 69 7 73 75 76

3g 41 42 4fiN\ 4 8 50 51 53 54 56 57

2 22 23 25 2 6 28 29 31 32 34 35 37 38

14L ~BL 16 14 L 203 65 9 1 15 16 1B 1

Figure 7. Edges.

m I -Second Edge

L. -Second Neighbor -.

Firstj;7 7_ q 98e- 99 /T; 00-Third 1 ode

9 E 5X684-- 7

.. k -Frs
Th9r 41 42bo 5 - ' 47 4-8" 5-0s 51e5ighbor5

i40t 4ode 46 49,, 52 55; rtnl
Sk +\+,\ S

Figureir 7.dEges

ecoFirs Noode ThiThir Nodo"de"

Thr -e ho First Neighbor " "
T-Triangle

FirstNoec Edge :Z-n

Figure 8. T igeo oentos

Third



The inner products (ac, ctj) which appear in the mass matrix of Lquations

r (4) are evaluated as

(a, fi) fdxdy (a x + by + C)

6T +2()

where the ith node is surrounded .by six adjoining triangles T. The two-

dimensional integration over a triangle T in Equation (10) can be performed

either analytically or by the midpoint rule according to the formula

fw(x. y) dxdy - (A/3) w(P + W(P + w(P3)] (11)

where A is the area of triangle T, and P1, P2, and P3 are the midpoints of

the sides. This simple midpoint formula of integration is exact whenever the

integrand, w(x, y) is a quadratic function in x and y. The present research

code uses the above midpoint rule and contains options for the use of a com-

posite midpoint and some analytic integration methods, as well. Using the

relationships between basis functions Oi Utpi and Yi= uya 1 , and noting

that ux and uy are constants, the inner products (ai, Oi), (8j, i), (0i. yi)

* and (Yi, Yi) can also be evaluated by the midpoint rules. For a general

operator L(u) = f, it can be shown that

LO
a =( dxdy f , and (12)

-- (-x' ei x i f:U

x. Flux t-(ax)i dxdyf + ' n, f T(s)ds (13)
=_L:2 inner f

edges of T

* The integration on ds is performed with respect to arc length s along a

triangle edge and ai = T(s) is the linear function of s which rises from a

value 0. at an outer node to a value 1.0 at the ith central node. Ldge

integrals can be evaluated analytically or by numerical quadrature. Simpson's

rule and a composite Simpson's rule are available for use in the present

research code. The derivatives x, ux, and the x component of the unit

outward normal n1 are readily determined at all times by invariant formulae

from the known amplitudes and nodal co-ordinates at triangle vertices.

-10-7



Inner products of Laplacian operators are more complicated to evaluate,

requiring, in addition to the quantities above, the unit tangent vectors and

their x and y components.( 6) The formulae for these quantities are also 0

encoded at the outset of computations for repeated use in later code calcu-

.- lations.

Problem Initialization

(i) Test Problem Designation (the PDE's)

(ii) Initial Conditions, Including Grid Nodes

(iii) Boundary Conditions

(iv) Problem Run Designations

(Numerical Quadrature Options, ODE
Integration Control Parameters, -
Jacobian Evaluation Options,
Regularization Parameters, etc.)

(v) Output Designations

Construct ODE's of the MFE Method

Residual and Matrix Solution of
Jacobian Evaluations, ODE Integration Linearized Residual

Including Regulariza- O Equations

tion Terms 
E

-. ~ ~Output L .

Figure 9. Schematic Representation of Major Functions Performed in the
Present MFE Codes in Both 1-D and 2-0.

W- -11- L
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The overall 2-U code structure is conceptually simple, as indicated in
Figure 9. The detailed code structure contains an assembly of approximately

forty subroutines which perform modularly the numerous substasks which are

, required in order to execute the major code functions indicated in Figure 9.

This structure is intended to facilitate mathematical research on alternative

(actually, interchangeable) OUE solution methods, matrix solution methods,

node control strategies, boundary conditions, and such other tasks as grid

mesh generation and issues of numerical analysis which must be investigated

in new PDE solution methods. This code structure of the MFE method also

appears to be highly compatible with vector and parallel processing computers.

Because the mass matrix C(y) in Equation (5) can become singular (when-

ever all components u have a flat portion in their graph at some node (xi,yi)) ,

regularization terms are included in the minimization problem for the x and y

* equations. The minimization problem for A and reads = 0 and 0 ,

where

2 2 2
w i - Li (U)II + (C (i) dj - S (dj)) . (14)

triangle
al ti tudes

This minimization yields regularization terms of the form:

in the i equation

:aa.

- S (d) • (15a)
• . 3x k

in the j equation

° i.
£{d - S (d.) ~i- (15b)ay k

• . . T a a .

It follows that the terms *. x and the terms and
. ax k k + k k ax n

-12-
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in Equations (15) are dependent primarily upon grid geometry; and their in-

variant formulae are thus generated at the outset and encoded for repeated .

calculations later in the code in a manner similar to many portions of the

residual evaluations which were discussed above.

The functions £2 and cS which appear in Equations (15) are treated in ,

exactly the same manner as an advanced penalty function formulation which

has been tested previously in 1-D investigations(, 2 ) of effective regular-

ization methods; that is,

c2 C 1 . l

(d - SEPMIN)

S 2 (17)
(d- SEPMIN)2

where SEPMIN is a minimum triangle altitude. A detailed node controlling

policy has been developed for the selection of values for the constants C1  _

and C2 in terms of local truncation errors and of the inner products (6,0)

and (y, y) which appear in the A and I equations. A discussion of this

policy in specific 1-0) problem applications appears in References 1 ana 2.

A detailed discussion of this policy for 2-0 applications is deferred until

several additional generalizations are discussed. These generalizations will

also have the effect of preventing automatically the inversions (tangling)

of triangles. Such inversions are presently detected and prevented by

testing the aspect ratios and the signs of triangle determinant quantities.

Integration time steps are reduced when aspect ratios exceed a designated

value or when there is a change of sign in the determinant quantities.

Numerous sample problems have been used for testing of the MFE method

in 2-U. These problems have been designed to test such numerical aspects of

the MFE method as:

(1) Inner product evaluations (analytic and numerical quadrature)

(2) ODE integration for the MFE equations

(3) Matrix solution methods

-13- S



(4) Regularlzation schemes for control of node motions

(5) Jacobian evaluations
(6) Boundary conditions (zero-Neumann and Dirichlet).

The PDE's in these test problems are in the form of general

conservation equations,

~~ut =-ix - gy + V(Ux + Uy),()

where the flux functions f and g can have nearly arbitrary functional

forms.

In addition to the simple examples of the heat equation and of square

wave propagation which were presented in Reference 3, two somewhat more

complex test examples have also been studied.

Oblique Propagation of a Scalar Wave

This example considers the propagation by pure advection of a scalar

wave diagonally across the initial grid mesh, according to the equation ut + . -

ux + Uy 0 0. The initial conditions for this example are shown schematically

in Figure 10 and are expressed as:

u(x,y,O) - 1.0 0.1 < x < 0.2; 0.1 < y_< U.Z
U(X.yO) = 0. x < 0.05; x > 0.25 and all y

u(x,y,O) - linear otherwise

Dirichlet conditions, u(x,y,t) = U., are applied at all bounoaries.

The co-ordinates x and y obey the following Dirichlet conditions: x = O.

along the y axis; x = 1.0 along the boundary x - 1.0, all y, y = U. along

the x axis; and y = 1.0 along the boundary y - 1.0, all x. The co-ordinate

variables obey zero-Neumann conditions on y along the y axis and along the

boundary at x - 1.0 for all y and on x along the x axis and along the bound-

ary at y - 1.0 for all x. (That Is, the y co-ordinate Is free to slide along

the vertical boundaries, and the x co-ordinate is free to slide along the

horizontal boundaries.)

4 -14-



Using a 6x6 grid of moving nodes, this problem is run from t 0 0. to

t 0.8, which spans the interval of free propagation. The accuracy of the

wave profile is maintained to within I part in i03, consistent with the
local truncation error constraint in the ODE solver. The velocity of pro-

pagation is accurate to 4 significant figures. The mesh is observed to move ....

flexibly in order to maintain these accuracies throughout the problem evolu-

tion. As this wave approaches the upper right-hand corner of the domain,

aspect ratios of some of the grid mesh triangles approach values on the order

of approximately 102, with no adverse effects. The triangle aspect ratios

can be made to assume values which are an order magnitude larger Dy imposing

Dirichlet conditions on the x and y coordinates at the boundaries. It was

also found that the MFE method can solve this problem with equal facility

and efficiency for much larger, finite gradients of the scalar wave front.

This problem can readily be modified so that the scalar wave trajectory

follows a circular path according to the pure advection equation,

ut = cos(t) ux + sin(t) uy , -a < x < a, -a < y < a , (19)

where the dimensions a are sufficiently large to contain the circular tra-

jectory. In this MFE solution, the scalar wave follows its circular trajec-

tory accurately and returns precisely to its initial position, consistent

with the local truncation error constraint in the UUE. solver, after a com-

plete revolution (t - 2w), using 20 time step cycles. The grid mesh again

expands and contracts smoothly and flexibly in maintaining the desired

solution accuracy at all times.

Burger-Like Equations.

A 2-0 analog of Burger's 1-D model equation is given by the equations

i - - (uv) + V2 u (UU)

av a (uv)- a (v2)  V2v ()

-1 5- 37



- 0.8 - U 1.0

0.8 u * linear

0.6

1.1 y Direction of
Propagation

0.4

0.25

0.20

0.10
Fu 0. -

0
0 0.1 0.2 0.4 0.6 0.8 1.0

t

Figure 10. Initial Conditions for Oblique Propagation of Scalar Wave.

Direction of
Propagation

1.0

0.8-- 0. 7 5 N

0.65 --
0.6

-0.4

0.2 ~ U *1.0

u linear

0
0 0.2 0.4 x 0.6 0.8 1.0

Figure 11. Transient Propagation of a Scalar Wave.
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where u and v can be viewed as x and y components of a fluid velocity,

respectively. In order to maintain a close analogy to the 1I) Iurger's model

results which were discussed in Reference 2, initial and boundary conditions

for this system of PDE's are first selected so as to lead to the propagation

of a uniform, step-like wave in a direction parallel to the x-axis; that is,

u(xyO) = 0. 0. < x x 1.0; 0. < y 1.U

v(x,yo) - 1.0 0 <y< 0.100; 0 < x < 1.0

v(x,yo) - 0. 0.101 < y . 1.u; 0 < x < 1.0

v(x,y,O) = linear otherwise

This problem is solved from t = 0 to t = 0.5 on a 4 x 19 grid with v 10-?.*

The dependent variable v obeys zero-Neumann conditions along the y axis and

along the (vertical) boundary at x - 1.0; and v obeys the Uirichlet condi-

tions, v - 1.0 along the x axis and v = 0. along the (horizontal) boundary

at y = 1.0. All interior nodal co-ordinates obey the same type of sliding

boundary conditions as were used in the scalar wave example discussed above.

ri Figures 12-15 present the MFE solutions of this evolving wave front. The

extensive migration of the MFE nodes from their initial positions to those

* positions which resolve the waveform at t=0.2 is clearly evident in Figures

12 and 13. The speed of propagation and the shock-like wavefront solutions

are resolved to accuracies of three significant figures, or better, consis-
• , tent with the local truncation error constraint of the OUL solver. The

magnitudes of the wavefront gradients are approximately 100 in this example,

and MFE solutions of this problem can be obtained with similar facility and

efficiency for much larger gradients (corresponding to smaller values of v
I-

in Equations (20) and (21)). Consistent with :arlier results in Reference 7

for simple square wave propagation by pure advection, it is found also in

this Burger-like example that wide latitude can be exercised in the selection

of node controlling parameters in the functions E2 and cS of Equations (16)

*This problem can be solved with equal effectiveness on an MFE qrid of 4xU
*]. nodes. The 4x19 grid simply represents the initial attempt on tnis problem.

The figures 12-15 below have rotated the co-ordinate axes in the x-y plane
by 90" from the conventional orientation (I horizontal and A vertical) in
order to improve the viewing angle for the-plotted results *n 3-U. The terms

S"horizontal" and "vertical" refer strictly to the conventional orientation
* of the x-y plane throughout this discussion.

9I -17-
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Figure 12. MFE Solution of Burger-like Equation in 2-D.
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Figure 13. MFE Solution of Burger-like Equation in 2-D.
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Figure 14. MFE Solution of Burger-like Equation in 2-D.
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"- Figure 15. M4FE Solution of Burger-like Equation in 2-D..
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and (17). When relatively weak internodal forces are used, no nodal devi-

ation (or bias) in the x direction is observed. (There are no transverse

forces in the PDE's, per se.) As the internodal forces are increased to S

sufficiently large values, the nodes can be forced by the regularization

terms to migrate toward the x-axis for the nodal triangulation shown in

Figure 12--meanwhile maintaining the accuracies mentioned above. The. .

direction of such forced nodal migration can be reversed by using the 0

opposite type of grid triangulation, and this node migration can also be

altered by the use of different penalty functions. Node control is thus

very flexible and desired accuracies are readily maintained. When PDE'S

contain non-trivial x-dependencies in their operators, the PUE's themselves S

resume their dominant role in governing the positioning of the nodes, as

will be seen in a skewed waveform example below. Figure 15 shows the

formation of the boundary layer at the right-hand boundary, as this MFE ..-

solutioni approaches the correct asymptotic solution. -

An example of a skewed, propagating wavefront (shock) can be formulated

in terms of the Burger-like equations,

ut =0 (a2)

vtu-112 (v2) + VV2  .(23)

t y0

on the unit square. An 8x8 grid of MFE nodes is used, and the initial con-

ditions for u and v on uniformly spaced grid nodes are:

u(x,y,O) = 0 . all x,y

v(xy,O) = 1+7T. 1+6T, 1+5r,...,1 at nodes 1, 2, 3,..., 8

along 1st row (x-axis)

v(x,y,O) = -1, -(l+T), -(1+2T),...,-(1+7T) at nodes b7, 58,

59,...,64 along top row.

The initial values of v(xy,O) along a given vertical line are obtained 0

by linear interpolation at interior nodes. The parameter T is assigned a

-20-



constant value of 0.01, and the value of vin Equations (22)-(23) is assigned

a value of 0.01 in the present run. As shown in Figure 16, these initial

conditions on v simply map a plane in which v has the values +1.07 at the co-

ordinates (0,0); +1.u at (1,0); -1.U at (0.1); and -1.07 at (1.1). LUirichlet

boundary conditions are maintained on v(x,y,t) and on x and y along the hori-
zontal boundaries; zero-Neumann boundary conditions are applied to v(x,y,t)

and to y on the vertical boundaries; and Dirichlet boundary conditions are

maintained on x along the vertical boundaries. This skewing of the initially

counter-directed velocity components along the top and bottom boundaries

leads to the evolution of non-uniform wavefront solutions which are seen

in the results below. In the early stages of solution, prior to t = 0.b, a

projection of the NFE solution on the x-y plane shows two counter-directed,

- quasi-horizontal wave impulses which propagate from top to bottom and from

V bottom to top at speeds of approximately U.5. At t Z U.5, a shock is formed
L

when the propagating impulses encounter each other near the horizontal cen-

terline of the x-y domain. Subsequently, a skewed, shock-like waveform is

generated and propagates in the serpentine manner shown in Figures 16-19. The
relatively large aspect ratios seen in Figure 19 for the MFE mesh at t = 2U.

were created deliberately by the use of Dirichlet boundary conditions on the

- x co-ordinates along the x axis and along the parallel boundary line at y =

" 1. The MFE node migration was fluid throughout and exhibited no grid-biasing
L effects. This problem was run from t = 0. to t = ZU. in approximately 125

time-step cycles. The gradients of the fully developed shock are on the order

* of 100, consistent with the present value of v 0.01. As above, MFL solu-

* tions of this problem on an 8 x 8 grid can be obtained for much larger gra-

dients (smaller values of v) with essentially the same levels of robustness

and efficiency as are seen in the present example.

From these early 2-U results it was apparent that the hexagonally

- connected triangular mesh and perhaps several other possible triangulation
L
S-schemes are quite compatible with the MFE method. The additional degrees of

• i- geometrical freedom which are available for error minimizing node motions in

2-D have been found to have a beneficial effect on the numerical integration
efficacy of the MFE method in 2-D, vis a vis the more highly constrained

nodal motions in I-D MFE solutions. (7,8 ) The nodal movement properties

- observed in these initial 2-U results thus suggest some likely implications

L_ -21-
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Figure 16. MFE Solution of Burger-like Equations for a Skewed Waveform in 2-D.
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Figure 17. MFE Solution of Burger-like Equations for a Skewed Waveform in 2-D.

-22-



- I I- -

Figure 18. MFE Solution of Burger-like Equations for a Skewed Waveform in 2-D.
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on the eventual role of mesh generation needs and data structure issues in

the NFE method. So long as the MFE method exhibits this robustness in its

continuous node movement properties, the use of grid mesh generation routines

would be reduced primarily to problem initializations.

In order to study the MFE nodal migration properties under more demand-

*2 ing circumstances, the initial conditions for the Burger's model above can be

* extended so as to create a more highly skewed waveform in two directions. The

POE's for this skewed Burger's model problem are given by:

ut -uux Vuy +vuxx +uyy) (24)

Svt = -uvx -VVy + v(vxx + vyy) (25)

where u is the x-component of velocity and v is the y-component, and V is an

effective diffusion coefficient. Shocks are generated with gradient magni-

tudes on the order of 1/v. Initial conditions which produce a doubly skewed

wavefront profile are shown schematically in Figures 20 and 21. (The counter-

posed initial velocity fields are designed to create an evolving shock profile

* which is skewed in both the x and y components of velocity.) Boundary condi-

" 'tions are given by:

.. u(O,y) Z U(1,y) = 0 0. < y < 1.

vx(O, y) = vx(l, Y) 0. 0. < y 1.

u(x, 1) =0.2 sin vx 0. < x < 1.

u(x, 0) = -.2 sin vx 0. < x < 1.

v(x, 1) -1. + 0.2 cos Irx 0. < x _< 1.
v(x, 0) = 1. + 0.2 cos nrx 0. < X_

The MFE nodes are fixed by zero Oirichlet conditions along the top and bottom

horizontal edges of the domain. The nodes are free to move vertically by

symmetric boundary conditions along the left and right edges of the domain.

" This problem can be solved readily by perhaps many PUE solution methods

whenever v assumes sufficiently large values. For example, a value of v

0.02 produces shock gradients on the order of 102.
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The MFE method requires only an 8 x 8 grid to give reasonably accurate

solutions to this problem, and Figures 22 and 23 show very accurate NFL solu-

tions on a 12 x 12 grid. Here Figure 22 presents an isometric view of the

* "evolving profile of the y component of velocity at t - 3.0, well after the

shock has formed and after the wavefront has undergone significant shearing.

The x-component of velocity is sufficiently sheared that a hidden line plot,

which is not yet available, is required for easy interpretation by the naked

eye. The MFE grid nodes have migrated extensively from their initial posi-

. tions as can be seen in Figure 23 which represents the grid mesh projected

onto the x-y plane at t - 3.0. Figures 24 and 25 present contour plots for

selected constant values of u and v, respectively, at t - 3.U. It is evident

from the magnitudes of shock gradients and from the regions of significant

. curvature which span nearly the entire domain that an alternative PUE method

with a fixed grid may require on the order of 104, or more, grid nodes in

order to achieve comparable degrees of accuracy in this problem.

This same basic problem can now be made to correspond to a much more

demanding physical problem by letting v = U.OU2. Figure 2b shows an isometric

view of the FIFE solution on a 16 x 16 grid for this case. Shock gradients

are now generated with magnitudes of several times 103. Before discussing

these MFE results in detail, some general observations should be discussed:

[ It is likely that most existing POE metfiod using either a fixed grid or a

less than optimal adaptive grid would require on the order of 105-10b grid

nodes to solve this problem with comparable accuracy. (We note as an aside

that numerous inviscid solvers which are under development do not apply at

all to this type of advection-diffusion problem because the Laplacian is an

essential mathematical operator whose effects must be rigorously resolved in

advection-diffusion PUE's. Because inviscid solvers do not generally solve

PDE's which contain Laplacians, they generate shocks with gradient shapes and

magnitudes that are governed exclusively by the selected gridding and/or by

the purely numerical dissipative processes In the inviscid method, per se.

Consequently, inviscid solvers would have no chance of resolving correctly

any of those physical dissipation effects which are usually expressed by

Laplacian operators and are present with fundamental physical significance

in transport theory, hydrodynamics, plasma physics, continuum mechanics, and

* - ,many other disciplines in the physical sciences. This critical discussion
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Figure 20. Plot of initial values of u in the 2-0 Burger-like example on :.
a 12 X 12 grid mesh.
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Figure 21. Plot of initial values of v in the 2-D Burger-like example on
a 12 X 12 grid mesh.
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Figure 22. Isometric view of v at t 3.0 in the 2-D Burger-like
example on a 12 x 12 MFE grid. .S
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Figure 23. MFE grid projections on the X-Y plane at t *3.0 in
the 2-D Burger-like example on a 12 x 12 grid.
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is not intended to denigrate the extensive research efforts on Inviscid PL)E

solvers and/or fixed node POE methods; but it does suggest that efforts to

accommodate Laplacian operators In otherwise inviscid solution methods and 0

efforts to investigate more optimal adaptive grid methods for use in many

existing PUE methods which are applied to advection-diffusion problems should

now assume greatly increased significance.)

It was apparent at this stage of research that our MFE results in 2-D
were continuing a trend which appeared in previous 1-U results. There, MFE

solutions of both the Navier-Stokes and physically dissipative continuum

mechanics equations in 1-D exhibited perhaps unprecedented simultaneous S

00,

0.7-

1.0

FIgure 26. Isometric view of Burgers test example at t 1.8 with
v a 0.002 on a 16 x 16 MFE mesh. Shock gradients have
magnitudes of approximately 1U3 in this solution for u.
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resolution of extremely disparate microscale and macroscale physical pro-

cesses.(7, 8) While 2-) MFE results which emerged during this period exhibit

similar promising features, numerous mathematical problems still require

- -resolution in order to attain fully the desired levels of success in truly

large-scale physical problems in 2-I. Clues to these problems can be seen in

L Figure 26.* For example, the irregularity of the grid triangles in the face

of the shock could eventually prove to be troublesome. Similarly, the small

oscillation at the base of the shock in this run is unsatisfactory, even

though it can be eliminated in any number of ways. Extensive testing and

analysis has indicated that the causal mechanisms underlying such mesh irre-

gularities and oscillations in 2-D can be associated with: (i) time step and

error control policies in the basic ODE integrator of Gear which is presently

used, (ii) convergence properties of the linear solver, and (iii) limitations

in the first-generation regularization functions. Intensive investigation of

these factors reveal the needs in future research which are discussed below.

-. O)DE SOLVERS FOR POE METHODS

The current status in this task area is that most existing UuE solvers

are not well-suited for ready implementation in either the MFL method or

numerous other advanced POE methods. This critical comment is, again, not

L intended to denigrate the impressive advances in ODE research and development

during the past decade; instead, it is intended to bring a strong new focus
upon the needs of PDE solution methods, in general, and more specifically

upon the pressing needs of adaptive grid POE methods which may involve large

numbers of discretized equations with highly distorted grids. Large distorted

grid meshes may, in turn, augur for iterative linear solvers which can solve

poorly conditioned matrix equations, as will be discussed further below.

A basic difficulty with most stiff ODUE software has come to the fore in

the present MFE research; i.e., most ODE solver packages have been designed

-. to accommodate many different types of classic OIDE problems. By classic, one

•*It is apparent that these suggested mathematical problems will have to be
resolved not only for the MFE method but also for most other advanced PUL
methods which may seek to solve the difficult advection-diffusion equations
which frequently arise in physical problems.

--
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refers here to such problems as chemical kinetics systems in which the depen-
dent variables (e.g. species concentrations) are all generically the same.

The error and time step controlling policies in solvers for classic OVE pro- 0

blems are usually less than satisfactory for applications of the OUL package

to POE solution methods. In POE systems, the spatial dependence of generic-

ally dissimilar variables comes into play. In fluid dynamics problems, for

example, the overall array of POE variables which have been discretized on N ,

grid nodes (xi, x2 , . XN) can be represented as jpI, ml, Ej, PZ, mZ, E2, ...

PNUIN, ENI, where P1 = P(x), P2  P(x2 ), etc. An ODE solver then operates on

this array of discretized POE variables as a single large vector fY1 , YZ, Y3,
' &3N-2' y3N-' Y3NI where y1 a Pl, Y2 = ml, Y3 = El, Y4 = P2, etc. .-

Because the error control policies in the Gear OUE package, for example, are

based upon L2 norm of all normalized quantities Yi/(Yi)max, unacceptably large

errors can be admitted in some individual components of p, m, or E at arbi-

trary spatial locations. A much better measure for error control policies in

PDE applications are maximum norms applied to each discretized PUE variable.

The implementation of alternative norms is found to extend deeply into the

logical structure of most UUE software packages, and alterations must usually

be performed by someone who is intimately familiar with the OUE package.

In view of such considerations, we devoted significant levels of effort

to: (i) modifications of Gear's basic ODE methoa for MFE computations; this

involved wholesale alterations of the internal Gear code structure and also

extensive considerations of scaling of MFE problem variables; and (ii) in-

evitably, the development of entirely new ODE integraton procedures which

better serve POE solution needs.

The extensive modifications to Gear's method have sufficed to solve
moderately challenging POE's with modest numbers of MFE gria nodes as was

seen above. But it is now clear, also, that completely new (UE code struc-

tures will be needed in pending large-scale MFE computations. We have,

therefore, undertaken the development of a low-order Runge-Kutta integration

package for MFE computations. This solver addresses several PUE needs:

First, error control measures operate on flexibly ordered variable arrays

using maximum norms on a (POE) component-by-component basis. Second, PUE

solutions have been found to require much more gradual time step advancement
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policies than have been built into most classic ODE solvers.* This distinc-

tion between classic ODE and PUE time step properties apparently stems from

the fundamentally coupled space-time dependences in PDE systems, vis I vis 0

classic ODE problems which have no direct or implied spatial dependences.

Whereas it is computationally worth the effort to attempt very large incre-

mental increases (sometimes by several orders of magnitude) in At in classic

ODE applications --even if such attempts may sometimes fail--one finds that

the computational penalties for unsuccessful large At increases are much more

severe in those POE applications where space-time couplings augur intrinsic-

ally for more gradual At advancement policies. Third, time step control

policies in the new ODE solver also incorporate convergence criteria from •

iterative linear systems solvers. Such iterative solvers should henceforth

be used in largescale MFE computations in the interest of minimizing computer

memory requirements. Fourth, low-order OUE methods are now used because

high-order solvers provide no apparent advantages in MFE applications. Low-

order methods serve to simplify the numerical logic, improve the code relia-

bility, and avert possible errors associated with changes of order which are

sometimes present in classic ODE system solvers. Finally, constraints on

allowable fractional changes in POE dependent variables are incorporated in

the overall time step control policy in the new ODE solver.

LINEAR SOLVERS FOR THE MFE METHOD

Advection-diffuslon equations have steadfastly resisted (if not defied)

satisfactory numerical solution whenever they have been used to describe

physical processes over highly disparate scales. Such problems occur, for

example, in numerous applications of Navier-Stokes equations to viscous . .

compressible fluids which may contain shear layers, shocks, and separated

flows. , The basic difficulty derives from the nature of the matrix equations

which must be solved in numerical PUE methods that are applied to these

problems. The matrix equations for discretized advection-diffusion PL's

are large, sparse linear systems in which the matrices are non-symmetric and

are not necessarily dominated by large terms on the diagonal. The skewness

of these POE matrices can become quite large for large At's and for highly

*These policies also extend deeply into the OUE code structure.
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distorted grid meshes, both of which are key factors in efficient solutions

I ~ of difficult advection-diffuslon equations.

The simple advection-diffusion equation, yt + c Vy vV2Y,, can

- be used to illustrate some of these features. Upon discretizatlon of the

" advection-diffuslon equation, a linear system of the form (A+B)X = C must

I [J be solved. The matrix A represents the stencil associated with the advection

operator, and the matrix B represents the stencil associated with a nine-

- point difference scheme for the Laplacian operator in 2-U. For represen-

tative values of At, these matrices may contain elements with the scaled

magnitudes shown below:

A -15 0
A (-1 0 15 (3)

0-15 0 ,

B= 4 -20 4 (4)
1 4 1 , and

1 19 1)

(A+B) -11  -20 19 * ()

Testing and analysis has revealed that most available linear solvers have

relatively poor rates of convergence when such significant large elements can

occur away from the diagonal in non-symmetric matrices. Such iterative matrix

solution methods as conjugate gradient, multi-grid and numerous other modern

-linear systems solvers (which may work well for symmetric matrices in dis-

cretized elliptic equations and/or for uniform grid meshes) do not converge

satisfactorily in presently considered advection-diffusion problems. The

source of difficulty clearly derives from the highly skewed matrices and

dominant off-diagonal terms. We have also shown that the direct L-U decom-

position method which has been used in the (iear method until recently becomes

" "both noisy and computer storage limited when large bandwidths arise in pro-

blems with more than a moderate number of MFE grid nodes.
I .-i._

Having identified more clearly the significance of these issues, we have

developed, in collaboration with Professor Keith Miller, one promising new
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approach to handling more effectively these imposing POE requirements on

linear systems solvers. This new matrix solution scheme has, so far, achieved

good convergence rates for At's which may be 10 to 20 times greater than the

large values of t called for by the OVE integrator. (It is generally hoped
* in POE solutions that the time step size is determined by the truncation

error of the OUE integrator and not by severely limited convergence proper-

ties of the linear solver.) This advanced linear solver has solved the

- Burger's equations discussed above with the same CPU cost as the direct L-U

decomposition method in the ear solver, but with greatly reduced storage

requirements.

REGULAR IZATION

Regularization techniques have rarely been used systematically, if at

all, in POE research in the past. There is thus presently great confusion

and misunderstanding of the role of regularization techniques in PUE solu-

tion methods. On the one hand, many practitioners of conventional POE methods

*1 j suspect that regularization is an unfair trick by which one can force PUL--

solutions to come out in any desired manner and that such methods can there-

fore not be trusted. On the other hand, regularization methods are proving

to be valid and powerful mathematical tools which can now be applied to

--" ' achieve effective grid movement criteria systematically and to ensure that

* high POE solution accuracy is also achieved in the process.

Only the simplest, first-generation regularization functions have been

used in 2-U MFE problems to date. These penalty functions act like springs

and/or dashpots in their action on mesh triangle altitudes (see Figure 27).

The current penalty functions allow mesh triangles to distort more or less

arbitrarily, so long as altitude magnitudes remain positive and maintain some

designated minimum separation. This simple strategy has worked remarkably
well in a surprisingly broad range of 2-U problems considered to date, and we

continue to probe the limits of adequacy of this simple first-generation

regularization method. In the Burger's test example discussed above with v =

. 0.002 and a 16 x 16 MFE mesh, minimum nodal separations were chosen to be
much smaller than v. As seen in earlier figures, the grid triangles can

- . become very irregular and assume configurations with extremely large aspect

L -34



ratios (0(102) to 0(103)). Figures 28 and 29 below show this same Burger's

test problem run with "softer " dashpot forces acting on triangle altitudes

than in the run shown previously in Figure 26. The triangles in the face of

the shock are more regular in this latter run, and their compaction in the

center of the wavefront resolves the region where intense shearing occurs.

Figure 30 shows the projection of the MFE grid mesh on the x-y plane in this

example. Selected mesh connections have been traced in heavy ink in these

latter figures in order to indicate the general migration pattern of the MF.

nodes. It is evident that extremely large mesh triangle aspect ratios have

been readily maintained near the shock front, still using the improved L-U

decomposition linear solver in the modified Gear integrator in both of these ....

runs. Perhaps more striking is the large degree of fluid shearing which is r

resolved in the face of this skewed shock front by the MFL grid.

In the long run, there is no fundamental reason, or desire, for the MFL

mesh to always be as highly skewed as the physical flow lines in order to .

accurately resolve such shear layers. It was nevertheless encouraging at

this stage of work that the the MFE method is able to handle such large grid

aspect ratios effectively.) Alternative regularization criteria which would

promote mesh homogeneity (e.g., by minimization of grid triangle aspect .

ratios) remain under investigation.

We have thus barely opened a potentially vast area of investigation of

regularization techniques for adaptive PUE meshes. Future work should also -

consider highly local regularization schemes which would decrease the domain

of influence of current penalty functions, particularly in view of the very . .

attractive MFE properties which are emerging in: (i) alternative co-ordinate -

systems and (ii) the treatment of interface phenomena.

Figure 27. Schematic Representation of First-Generation -FE
Regularization Functions in 2-U.
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Figure 28. Isometric view of the 2-0 solution of the velocity
component, v, in the Burger-like examiple with v 0.002
on a 16 x 16 MFE grid.
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Figure 29. Isometric view of the 2-D solution of the velocity
component, u, in the Burger-like example with v = 0.002
on a 16 x 16 MFE grid. Note that the viewing angle is
rotated by 90 for a clearer view of the doubly skewed
wavefront.

LE.7

A.5

Figure 30. MFE grid projections on the x-y plane in the 2 -

Burger-like example on a 16 x 16 grid with v- 0.002.
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ALTERNATIVE CO-ORDINATE SYSTEMS

Initial work was undertaken on 2-D MFE calculations in cylindrical co-

ordinates. The results in this area provide guidance for future developments

S .in spherical co-ordinates. The apparently natural elimination of singular-

Ir ities at the origin by the MFE method is of major interest because such

singularities have been historically troublesome in many PUE methods. For

example, transport equations contain in cylindrical co-ordinates advection

operators of the form T (ry), where r is the radial co-ordinate; and y isr ar
a dependent variable of the PDE system. Singularities or other anomalous

features frequently arise in discretized representations of the term (y/r)

as r---.0. But the MFE discretization is formulated in terms of well-defined

inner prod,. s which eliminate such possible singularities. For example,
the inner prodcts of the term (y/r) with the basis function a, taken over

the interval Ar, is given by

fy/r) •a• rdr= y •adr . (29)

r Ar

The integral of a y dr is essentially analytic and is readily eval-

uated everywhere on the problem domain. This attractive MFE property in

cylindrical co-ordinates obviously holds in a similar manner in spherical

co-ordinates. The properties of these r-weighted norms are naturally

different than the MFE inner products which were used in the Cartesian

co-ordinate systems considered in earlier MFE work. Analysis and testing

of these properties associated with r-weighted norms and of node controlling
L

penalty functions in cylindrical coordinates has been limited so far, but

more extensive work should continue in this area in the future.

. Phase Transition Problem: A Stefan Model of a Transiently Heated Pipe
Imbedded in Permafrost

In a continuing analysis of MFE node movement properties during the

third year of this work, a basically cylindrical problem was considered

using initially cartesian co-ordinates. This problem is solved for the

transient melting of permafrost due to the presence of a heated pipe buried
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within the permafrost. The material phases of ice, water, and mush are des-

cribed in terms of their respective enthalpies in this Stefan model. The

diagram below shows a plot of enthalpy versus temperature for the material

phases of ice, water, and slush.

The variables and constants are:

h, enthalpy per unit volume (ergs/cm3 )
r, temperature ('K)
X, heat capacity (ergs/cma3-K)
K, thermal conductivity (ergs/cm-sec-K)
y, latent heat of fusion (ergs/cm3 ) - .

The PUE for enthalpy is

KV (T(h)) (U)
at

This enthalpy PDE can be rewritten as

ah _ ah aT _at T) at: V2T  (31)

slope X

j (slush) 

(liquid) 

. -.

-c EE T : ' .- .
lsolid • . ,(solid)(

Figure 31. Diagram of Enthalpy Versus Temperature in Permafrost
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The generalized heat capacity can be obtained from the diagram above.

It is given by

C(T) =2 X+ 6(T) (32)

L [where ST is a sharply peaked function. In this example

6(T) 15 [(T - £)(T + e)]2 (33)
5

16C

Letting X = 1, y = 2, and K = 1, the PDE's above become

aT 2-
1 + 26(T) =V2T (34)

At t = 0, T = -1. everywhere. Dirichlet conditions are maintained on

the top (y = 1.), bottom (y = 0), and vertical right boundary (x = 1.)
Symmetry boundary conditions apply on the vertical left boundary (x = 0.),

except at the pipe. A time-dependent Dirichlet condition,

T =-1 + 4 1 (35)

* describes the transient pipe temperature in the left boundary. That is, the

pipe is heated from an initial temperature of -1.0 to a maximum temperature

3.0. Figure 32 shows the original MFE grid, which is essentially Cartesian.

After an initial induction period, the MFE solutions exhibit an outward,
- circularly propagating melt front which is, in fact, an enthalpy shock cor-

responding to the large gradient in enthalpy at T = ( + c associated with
the melting phase change. Figures 33 to 35 show the ensuing evolution of

this enthalpy shock using a 9 x 17 grid w...-

It is interesting to note in Figures 33 and 35 that the initially Car-
tesian MFE grid nodes migrate readily to circular orientations before the

onset of melting. After melting has begun, the MFE node contours track the
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Figure 32. A 9 x 17 Node lIFE Grid for Stefan Model Problem at t =0.
(Dotted lines denote modifications to create an initial
MFE grid mesh for this problem from a standard grid mesh.)
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enthalpy shockfront curvature at T - 0 with high accuracy. At later times,

the MFE nodes need not be strictly conformal with the shock front, per se.

(See Figures 34 and 35.) High accuracies are nevertheless maintained due

to the interpolation features and the residual minimization properties which

are inherent in finite element formulations. Node biasing effects which are

associated with the grid triangulation are also clearly evident in these

results at late problem times. (See, for example, the right-hand portions

of the domain; the grid pattern at the top right differs markedly from the

bottom right region. It is noteworthy that very little is occurring physic-

ally in this region which contains the highest degree of grid biasing.) It

is apparent that, in this particular problem, the MFE nodes exhibit a potent

capacity to resolve fairly complex topological features with a small number

of grid nodes, despite the presence of significant grid biasing features.

* . In the process of obtaining these results, the following features were
observed which suggested new MFE research in,.iatives:

-M (i) The numerical conditioning of the MFE integrations can become

poorly conditioned in difficult, highly complex flow regimes. Numerous

possible causes and remedies which should be investigated include: (1)

improperly posed or incomplete physical/mathematical models; (ii) highly

sheared grid cells; (iii) implicit coupling of incommensurate PUE aepen-

dent variables which can give rise to poorly conditioned, non-symmetric

matrices which are devoid of diagonally dominant elements; (iv) complex

flow configurations near boundaries; and (v) non-optimal regularization.

(ii) The simple grid triangle connection scheme which is used in this

example (with all grid diagonals having the same orientation) can

exhibit a distinctive biasing effect in the evolving MFE mesh orien-

tations. In many problems such grid biasing is of no practical con-

* . sequence. For example, MFE solutions of planar wavefronts maintain

extremely high accuracies despite transverse grid biases.) In other

large-gradient problems, grid biasing has been found to: (i) hamper

computational efficiency, and (Ii) possibly impair numerical condition-

ing and accuracy. Several alternative grid connection schemes are logi-

* cal candidates for testing and implementation in order to improve, and
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possibly eliminate, such grid biasing effects. Alternative regulariza-

tion methods are also beginning to show some promise.

(iii) Matrix solvers. Extensive testing of matrix solvers for fully

implicit MFE calculations indicated three general size distinctions in

the choice of matrix solvers for use on CRAY-capacity computers; these
.0

are:

a Small problems; e.g., gas dynamics equations -- which are discussed

in the next sample problem -- for the dependent variables p. u, v,

E, x, and y on a 10 x 20 grid mesh, or smaller. Direct L-U decom-

position methods can be, and have been, used quite effectively in

small problems. Other small problems include Burger's equations on

a 25 x 25 mesh, as described above.

e Medium problems; e.g., gas dynamics on a 30 x 3U grid mesh. Vari-

ous iterative multigrid methods exhibit some promise in this size

range. Additional research, development, and implementation is

very much in order here.

* Large problems are defined by default from the items immediately

above. Practical solutions of large problems are an ultimate ob- --

jective for applications of the MFE method. Advanced iterative

solvers, including perhaps dynamic ADI and/or other equation-

splitting alternatives remain to be investigated in conjunction

with both medium and large problems.

Gas Dynamics Problems Which Address Physical versus Non Physical (Numerical)

Dissipation Effects in Gases

It is well known in aerodynamics that shockwave-boundary layer inter-

actions are dependent upon local viscous dissipation and thermal conduction

processes for .the distribution of internal and kinetic energies. This depen-

dence can in many applications be a sensitive determinate of macroscopic

flow properties. Such shock-boundary/shear layer processes can impose severe
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demands upon computer codes because the most reliable computations of the

essential physical processes must first include the physical dissipation

operators of the full Navier-Stokes equations and then use optimally dis-
tributed grid densities which can accurately resolve the actual physical

dissipation processes and eliminate the numerical dissipation processes.
To gain a full appreciation of the origin and nature of physical dissiption

0 P, '..

" enprocesses, it is well to recall the development of the avier-Stokes equa-

tions in the context of 1-LI kinetic theory. That is, the fluid equations

can be wri tten as:

k j (Pv) -0 (310at ax

at ax R (U) P(1) P(2) + (37)

I -. .

3E +aa a (0) (1) (2)
., L(Ev) - * (pv) TX q + q + q + .. (38)

A zero-th approximation of the kinetic theory for gases uses the consti-

tutive relations for an inviscid, non-conducting fluid; i.e.,

(U) pRT 1 2
p p A (y 1)(E 2Pv) (39)

These relationships yield the well-known, inviscid Euler equations.

A first approximation of the kinetic theory for gases gives the Navier-

Stokes equations according to:.--

+ p () + p -= (y - 1)(E 1 2 4 . (41)

q q(O) + q(1) Ka8 (42)

ax

A second approximation of kinetic theory gives the Burnett equations, etc.
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In order to address the primary issue of the potential significance of

physical dissipation processes as determinates of transient macroscopic flow

properties, we wish to distinguish the relative roles in code calculations

of numerical vis a vis the physical dissipation effects which appear on the

right hand sides of Equations (37) and (38). For this, we have solved a

simple shock-boundary layer reflection process in 1-U. This example is

frequently referred to as the anomalous wall heating problem. 9 ) In this

problem, anomalously high temperatures are calculated by many existing shock

hydrodynamics codes for the reflection of a planar shock from an infinitely

reflecting wall in slab geometry. The MFE results which follow indicate that

the anomalous aspects are eliminated when numerical dissipation is suppressed
and, most importantly, when the physical dissipation processes in the Navier-

Stokes equations are accurately resolved in the transient reflection process.

: The following test problem in 1-D slab geometry illustrates these results:

* Initial Conditions:

X. O) 1 0 . < x < 2.

p(x, 0) = C(x, 0) = 0 0. _ x C 2.0
v(x, 0) = -1 AXo < x < 2.0
v(x, 0) = linear 0 -Z x Z Axo
v(x, ) 0 x U.

y= 5/3

Boundary tonditions:

Reflection at x U .
Dirichlet at initial values at x = 2.U

- Rankine-Hugoniot Solutions for Infinite Shock (tP-):

s = 1/3
p+ = 4.0 ; p" 1.0e: + = 0.5 - 0"= . -
V+ = O. V- =-1.
p+ = 1.33 ; p- .

The time evolution of this shock was solved by the MFE method in two
- ways: First the full Navier-Stokes equations were solved accurately using

alternative values of v a 4v/3 and c. These solutions are denoted by N-S in

the accompanying figures. In one set of N-S solutions, v = K = U.U1, which

- .is unrealistically large but which permits comparisons to other fixed node

- -46-
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PDE solutions that may use on the order of 100 to several hundred grid nodes.

In another set of N-S solutions, v n K = 0.U01, which approximates physically

realistic values for actual dissipation processes in gases. Second, the 0

variable denotes internal energy per unit mass in the accompanying figures,

and anomalous diffusion (denoted by A in the accompanying figures) was simu-

lated by including a diffusion term VrPxx in Equation (3b). This effectively

simulates some form of uncontrolled numerical diffusion which is present

intrinsically in all numerical PUE solution methods. (Uncontrolled numerical

diffusion is the only source of dissipation in numerical solutions of the in- - l

viscid Euler equations.) In the results which follow, we have verified that

the MFE solutions of the Navier-Stokes equations have reduced all numerical .

or other anomolous diffusion effects to imperceptible low levels and that the

observed behavior of shock interactions is associated with physical dissipa-

tion operators.

At t = U+, the shock incident on the origin is in the incipient state of

outward reflection. At t = 0.0b, Figures 36 and 37 show that the calculations

of the reflected shock with uncontrolled diffusion (or simulated numerical

diffusion) tend immediately to overheat in e and to correspondingly under-

shoot in p relative to the Navier-Stokes solutions. Although these transient

solutions are not near their steady state values at this early time, it will

be seen that the ensuing evolution toward equilibrium is quite sensitive to

both the magnitudes and the nature of the dissipation processes in the compu- 0

tations.

Figure 38 shows that at t = 0.15, the lip of the shock in the Navier-

Stokes solution is approaching the steady state value of P = 4.U, and the -
anomolous dissipation solution lags by a significant margin. The fluid

buildup at the front of the shock is evident here because the fluid near . - -

the origin has stagnated while additional fluid continues to stream in toward

the origin from the region to the right of the shock. Figure 39 shows that

the anomolous dissipation results continue to lag behind the Navier- tokes

solutions to a significant degree at t = 0.30U. At t - 2.0, the Navier-Stokes

solutions have approached steady state Rankine-Hugonlot conditions (not shown

In Figure 40), and the anomalous dissipation solution has still not reached

the Rankine-Hugonlot values in the vicinity of the origin. The anomalous
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wall heating effects due to uncontrolled dissipation in the density equation

* *have thus persisted to very long times vis a vis the accurate solutions of

the Navier-Stokes equations. Non-physical dissipation which is sometimes

introduced as artificial viscosity terms in fluid calculations can be shown

to have similar anomalous effects, as can the numerical dissipation and/or

numerical uncertainties which are present in solvers of inviscid Euler
! equa tion s.

Figures 41 and 42 present the results of another test of sensitivity of

the Navier-Stokes solutions to non-optimal grid locations. In this test

problem, a physically realistic value of v = U.OUU1 is used in MFE solutions

of the Navier-Stokes equations. We have, however, deliberately constrained

the MFE grid nodes in this test case so that they do not migrate to their

truly optimal locations, as in the results considered previously. Figure 41

shows several significant features: (i) the shock gradients associated with

v O.OOU1 are extremely large; the accurate resolution of these gradients

would require several thousand nodes if a fixed node PUE solution method were

to be used, (ii) the Rankine-Hugoniot solutions are approached much more

rapidly for the physically realistic values of v than for the larger values

of v which are typically used either tacitly or explicitly in many other PUE

solution methods, and (iii) the slight constraint on node movements and thus

L on nodal positions do not show up immediately; but once the perturbation

becomes significant (as seen in Figure 42), its effects can grow rapidly. In

summary, these results demonstrate that reflected shock solutions can be very

sensitive to non-physical dissipation effects and to slight deviations from
optimal grid node positioning, even in adaptive gridding methods. All of the

results in this section were obtained with approximately 30 MFE nodes. As

many as 61 MFE nodes were used to verify that the MFE solutions were in fact

converged solutions. We have also compared the steady state MFE solutions of

fluid velocities with the analytic Navier-Stokes solutions of the steady

shock. Excellent agreement was obtained between the MFE solution and the

analytic Navier-Stoke solution. In contrast, it was found after extensive

attempts that computed solutions which contained nominal degrees of numerical

or other anomolous diffusion could not be forced by parameter manipulations
to agree with the analytical shock solutions. In still other MFE calcula-

tions, we have computed in 1-U the interaction of a shock with an Internal

-- so-
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Figure 40. MFE solutions of the Navier-Stokes Equations and
anomalously dissipative equations at time *2.0.
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shear layer associated with a contact discontinuity -- in direct analogy to

the irregular shock reflection mechanisms which occur in higher dimensions.

Here also, the computed macroscopic flow properties were sensitive to accurate 0

resolution of the physical dissipation processes in the full Navier-Stokes

equations. In the absence of the stringent tests of convergence which were

applied here, it can be extremely difficult to discern physical oscillations

and dissipation effects from non-physical and/or purely numerical oscillations .

and dissipation effects. We have, in fact, found it generally impossible to

simulate the effects of the actual physical dissipation processes in shock-

boundary layer interactions by the use of either artificial or parametrically

controlled numerical diffusion processes in Euler equation solutions. S

Shck-on-Wedge Problem in 2-)

A shock-on-wedge problem which can be verified against the experimental

data of Gilass and co-workers(lU) has been addressed in 2-U HFE calculations.

This problem is posed in rectangular coordinates, as shown by the schematic

view of an initial grid mesh configuration in Figure 43.

Figure 43. M'FE Initial Grid Zone Configurations for Shock-on-Wedge Problems.

In 2-0, we have used the mass, momentum, total energy representation (p,

oE) of the fluid equations. The Navier-Stokes equations in the (p. m, E

representation are given by
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(43)
at[. --
at + V (m m/p) ( 44)

[- 3E
't +V " (M/p) + -V"I V " ((M/p)) ,(45)

at -

* . whereY is the generalized stress tensor and Q is the heat flux vector. The

heat flux vector is frequently given by

_ - VT , (4b)

where T is the temperature. The general stress tensor is frequently given by

ii -pI + T (47)

E. where I is the identity matrix. For an ideal gas (a Newtonian fluid) in
I=

Cartesian co-ordinates

O = (Y 1)(E - /2P), and (48)

* . tx 1 a(m/P)x 2 49
:: '- x = 2 ax -31. (V/ (m/p))4)

a(m/p)X 2

Tyy= p1-(V (m/p)) (4U)_x ax mp

ra(m/P) + (5))

Txy = i ay a (51)

It is important to note in Equation (44) that the quantity .m! is a

dyadic. Special attention has been devoted to exacting evaluations of thoseI
inner product terms which involve factors of -1 for small p. These factors

are present in all standard representations of the fluid equations.
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This 2-0 test problem considers the case of regular shock reflection in

argon at Mach number Ms - 2.05, po = 150 torr, po 3.23 x iu 4 9/cm3 , TO

297.6"K, and wedge angle e = 60" (see Figure 44).

V+ = 0
-m M U Incident Shock (1)

SM+ =S C+

: -iL .: .:( + ) ( -)

Reflected Shock (R)

Figure 44. Schematic representation of regular reflection in

Shock-on-wedge experiments. "

Initial conditions calculated from the Rankine-Hugoniot relationships are:

p= 3.23 x 10~ g/cm3

m+ = 0

E+ [p+ C+ + m+/2p+3 = 3.0 x 105 ergs/cm3 and

p-_= 7.87 x 10-4 g/cm3

m.= 30.559 gm - cm/sec

E_ = [p_ e- + m/2p-j = 2.132 x 106 ergs/cm3

Boundary Conditions

A significant point of fundamental physics became manifest in the study

of boundary conditions for shock-on-wedge calculations. For a variety of

*; reasons, conventional shock codes tend to use slip-type boundary conditions.

i . In actuality, the velocity of air molecules is zero at the types of surfaces
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under present consideration. For the sake of common comparisons, and to test

the sensitivity of MFE shock-on-wedge computations to alternative boundary

conditions, we first attempted to solve the regular shock-on-wedge test pro-

blem with slip-type boundary conditions, in which the normal component of

velocity along the bottom horizontal surface and inclined wedge are zero and

the tangential velocity components are treated by zero-Neumann (or symmetry)

conditions (see Figure 44). These symmetry boundary conditions are applied

similarly to the MFE grid nodes so that the grid nodes would slide freely

along both the horizontal surface and the inclined wedge surface. But the

MFE method has always been found to be extremely sensitive in its accuracy

and consistency requirements to the presence of any physical or mathematic- S
ally ill-posed condition. Here, the surface normal is not defined uniquely

at the front of the wedge. Consequently, the basic consistency requirements

in the MFE method impeded the numerical integration process because the

symmetry boundary condition at the foot of the wedge is ill-posed, and thus

could not be properly resolved as a truly rigorous PLU solution. The MF-

method also tends to be less tolerant than most PUE methods of computational

swindles which are frequently used to accomplish slip-type boundary condi-

tions. It thus became quite apparent that it is possible to enforce slip-

type boundary conditions only by accepting erroneous numerical solutions in

the boundary layer region near the front corner of the wedge. It was further

apparent that these errors could propagate to regions well away from the

local source of difficulty. In view of these results, we next attempted to

take a large step forward in terms of both the physics and computations of
the physically required non-slip boundary conditions. This turned out to be

a large step because this shock-on-wedge problem has a turbulent boundary

layer in the duct represented by our problem domain. Nevertheless, some key
points became manifest in this task which will be described immediately below.

The initial shock conditions are shown in Figure 45. This problem is

solved in a 1 cm duct. For viscosity p - 5 x 10-4 , the Reynolds number is

approximately 5.7 x 104. Such a flow is clearly turbulent. The MFL solutions

of the laminar Navier-Stokes equations were nevertheless attempted as a

numerical experiment. These results appear in Figures 46 to b5 with self-

explanatory captions. At t = U.30 the shock is just starting to encounter

the wedge front; and the isodensity contours early in the reflection process
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M 2. 05

+ -=3.23 x 10-4 9/cm3  U =6.58 x 10 cm/sec

P+ 150 torr
V= 0. 0 7.54 x10-4 g/cm3

E= 3.00 x 105 ergs/an p 760 torr
v- = 3.76 x 10 cm/sec

C+ 3.21 x 104 cm/sec E- = 2.03 x 106 ergs/cm3

Figure 45. Initial Conditions for Regular Reflection of Planar
Shock in the Experiments of Deschambault and Glass.C10)

E N S I Ytime 0 L

t

Figure 46. MFE Solutions of Laminar Navier-Stokes Equations for a
Regular Shock Reflection Experiment of Deschanibault and
Gla as.JM 2.05, e = 600, p+ =150 torr, p4. = 3.23 x
10 g/ 3 in Argon.) The MFE Grid is 9 x 51 Nodes and
Non-Slip Boundary Conditions are Used.
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Figure 48.

MFE Solutions of Laminar Navier-Stokes Equations for a
Li Regular Shock Reflection Experiment of Deschambault and

Glass. (MS = 2.05,6e = 600% p, - 150 torr, p+g = 3.23 x
1o-4gfcm3 in Argon.) The MFE Grid is 9 x 51 Nodes and

* * Non-Slip Boundary Conditions are Used.
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DENSITY t *0. 35S

A: " 0 4 65 0.6 0 7 08 0 9 'C

Figure 49.

t 0.35

Figure 50.

MFE Solutions of Laminar Navier-Stokes Equations for a
Regular Shock Reflection Experiment of Deschambault and
Glass.cSs = 2.05, 6 = 600, p+ = 150 torr, p+ = 3.23 x
10-4g/c in Argon.) The MFE Grid is 9 x 51 Nodes and
Non-Slip Boundary Conditions are Used.
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DENSITY t *0.44

Figure 51.

t-0.44

Figure 52.

MFE Solutions of Laminar Navier-Stokes Equations for a
Regular Shock Reflection Experiment of Deschambault and
Glais.(m5 = 2.05, e 600, p+ 150 torr, p.. 3.23 x
10- griIn Argon.) The MFE Grid is 9 x 51 Nodes and
Non-Slip Boundary Conditions are Used.
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Figure 53.

9. DENSITY t - 0.51

' 2 0 304 0 0. 10 a 0 9 ID

Figure 54.

MFE Solutions of Laminar Navier-Stokes Equations for a
Regular Shock Reflection Experiment of Deschambault and
Glass. (Ms - 2.05,8e = 600, p+ = 150 torr, . 3.23 x
1G-4g/cmi in Argon.) The MFE Grid is 9 x 51 Nodes and
Non-Slip Boundary Conditions are Used.
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Figure 55. MFE Solutions of Laminar Navier-Stokes Equations for a
Regular Shock Reflection Experiment of Deschambault and
Glatis. (Ms = 3.06, e 600, p.. = 150 torr, p+ = 3.23 x
10O4g/cni in Argon.) The MFE Grid is 9 x 51 Nodes and
Non-Slip Boundary Conditions are Used.
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Figure 60.

.. MFE Solutions of Laminar Navier-Stokes Equations for An .-

, Experimental Plane Shock of Oeschambaolt and Glass Reflecting
"-Against 2a Vertical Woill. (Ms = 2.05, 0 -90 , p+ = 150 torr, _
" p+ =3. 3 x 10- glcm3 in Argon.) A 3 x 31 MFE Grid is Used.
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TN t *2.3

Figure 61. MFE Solutions of Laminar Navier-Stokes Equations for An
Experimental Plane Shock of Deschambault and Glass Reflecting
Against a Verti ~al Wall. (Ms = 2.05, e = 90*, p+ = 150 torr,
p+ 3.23 x 10- g/crn3 in Argon.) A 3 x 31 MFE Grid is Used.

t - 2.3

0 __

_- 44-

Figure 62. Project of MFE Grid Mesh on the x-y Plane for an Experimental
Plane Shock of Deschambault and Glass Reflecting Against a
Vertical Will ' (Ms = 2.05, e = 900, p+ = 150 torr, p.. 3.23
x 1O-4g/cm~ in Argon.) A 3 x 31 MFE Grid is Used.
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at t - 0.35 have a regular profile. At t 0 0.44 the formation and subsequent

shedding of eddies are becoming apparent. These are formed and evolved

* according to the physically inadequate laminar dissipation processes in the 0

present Navier-Stokes solutions and not by numerical dissipation. Analysis

of vorticity generation rates indicates clearly that a turbulent model of the

physical dissipation in the boundary layer is required in order to model this

system according to physical reality. We nevertheless seem to be computing

the early onset of turbulent behavior.

Mostly, this example shows an apparent capacity of the MFE method to

attempt to resolve extremely micro-scale dissipation processes simultaneously 0

with the macroscopic flow features. In this sample problem, it was undoubt-

edly the physics model which requires improvement more than the numerics.

Because local turbulent dissipation rates exceed laminar rates by large fac-

tors, it is likely that this experimental test example imposes more severe

demands upon the PUE method than will be encountered in more realistic physi-

cal models of real shock environments (which have much larger-than-laminar

dissipation rates).

In order to verify that the complex behavior in this example was truly

associated with vorticity generation in the boundary layer, this same inci-

dent shock was propagated into, and reflected from, a vertical wall. Fluid

m shears do not occur in this example, and the MFE solutions appear in Figures

56 to 62. The shock profiles remain perfectly planar (to many significant

figures) because only compressive and expansive forces act in this reflection

process. Neither numerical dissipation nor anomalous vorticity effects were

perceptible in these MFE solutions. It was also validated that the Rankine-

Hugonlot and Taylor solutions of the steady reflected shock profiles were

obtained in these MFE solutions.

SUMMARY

The report above describes all significant results of this three-year

investigation of the basic MFE method and its properties. both the promise

*" and the problems which may require extensive additional research have been

indicated.
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